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The spin dynamics of the geometrically frustrated triangular antiferromagnet multiferroic CuCrO2 have been
mapped out using inelastic neutron scattering. The relevant spin Hamiltonian parameters modeling the incom-
mensurate modulated helicoid have been determined, and correspond to antiferromagnetic nearest- and next-
nearest-neighbor interactions in the ab plane with a strong planar anisotropy. The weakly dispersive excitation
along c reflects the essentially two-dimensional character of the magnetic interactions. Classical energy calcu-
lations clearly point out the relevance of the balance between the adjacent planes coupling, the in-plane
nearest-neighbor interactions anisotropy, and a weakly antiferromagnetic next-nearest-neighbor interaction, in
stabilizing the three-dimensional magnetic order in CuCrO2.
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I. INTRODUCTION

For more than a decade, the study of frustrated antiferro-
magnets has been a fascinating subject of condensed-matter
physics, as the macroscopic degeneracy of the classical
ground state of these systems is considered to lay the
grounds for challenging novel physics. The perfect triangular
lattice, an archetype for the study of geometric frustration in
two dimensions �2D�, has recently attracted much attention,
owing to the discovery of multiferroic properties in the tri-
angular systems delafossite oxides CuFeO2 �Ref. 1� and
CuCrO2.2 As shown in Fig. 1�a�, these compounds are char-
acterized at room temperature by a stacking of perfect trian-

gular arrays, as their R3̄m symmetry ensures the isotropy of

the in-plane couplings. Despite their inherent frustration,
these systems find a way to lift their macroscopic degeneracy
and to achieve a complex three-dimensional �3D� magnetic
ordering below a Néel ordering temperature TN. In the case
of CuFeO2 a transition from the R3̄m to C2 /m symmetry is
found to accompany the magnetic ordering; this distortion is
believed to help lifting the degeneracy of the frustrated mag-
netic lattice to achieve an Ising-type four-sublattice �↑↑ ↓↓�
antiferromagnetic order at low temperature.3–5 In CuCrO2, an
incommensurate magnetic structure, derived from the classi-
cal 120° spin configuration expected for a perfect planar tri-
angular antiferromagnet,6 has been reported.7,8 A small mag-
netostriction effect, interpreted as the signature of a slight
deformation of the perfect triangular lattice below TN, has
also been reported in this compound recently.9,10 The transi-
tion to the noncollinear magnetic state in CuCrO2 coincides
with a ferroelectric polarization, evidencing the intimate cou-
pling between the magnetic and electric order parameters.11

From a microscopic point of view, the origin of this coupling
remains quite puzzling, as the trigonal symmetry of these
compounds imposes severe constraints on the standard theo-
retical models. Nonetheless, Arima12 proposed that the polar-
ization may actually result from a subtle modulation—a con-
sequence of spin-orbit coupling—of the hybridization
between the 3d cations carrying the spin and the bonding
oxygen ions.

In this paper, we focus on the investigation of the mag-
netic couplings stabilizing the magnetic structure of CuCrO2.
Owing to its layered topology, significant antiferromagnetic
in-plane nearest-neighbor couplings, which can be weakly
anisotropic �and will be denoted Jab� and Jab, with �Jab ,Jab� �
�0 and Jab� �Jab, following Ref. 9, see Fig. 1�b�� is ex-
pected. Coupling between in-plane next–nearest-neighbors
�JNN�, which has been shown to be prominent in CuFeO2,13

actually remains to be assessed in CuCrO2. Interplane cou-
pling �Jc� is, in contrast to the in-plane couplings, expected
to be weak, as the rather short correlation length along the c
axis revealed by neutron experiments8 supports the 2D char-
acter of the compound. The helicoidal structure of CuCrO2
�Fig. 1�c�� has been confirmed recently by Soda et al.,14 us-
ing polarized neutron scattering, and is in agreement, in the

FIG. 1. �Color online� Modeling of the magnetic structure of
CuCrO2. �a� Illustration of the nearest-neighbor �Jab� and next-
nearest-neighbor �JNN� magnetic interactions within the triangular
plane, and between the planes �Jc� in the delafossite structure. Each
Cr+3 is surrounded by six nearest neighbors and six next-nearest
neighbors within the plane, and by 2�3 neighbors in the adjacent
planes above and below. �b� Distortion of the hexagonal lattice re-
sulting in two nearest-neighbors couplings Jab� and Jab according to
Ref. 9. �c� Modulated helicoid with the spin-rotation axis parallel to
�110�. The propagation vector is shown as a full arrow and corre-
sponds to k= �q q 0� �q�0.329�.

PHYSICAL REVIEW B 81, 104411 �2010�

1098-0121/2010/81�10�/104411�8� ©2010 The American Physical Society104411-1

http://dx.doi.org/10.1103/PhysRevB.81.104411


framework of the mechanism proposed by Arima12 with the
experimentally observed ferroelectricity within the hexago-
nal plane.15

In order to study the different magnetic interactions stabi-
lizing this helicoidal structure, we have carried out inelastic
neutron scattering �INS� experiments on a single crystal of
CuCrO2. In parallel, we have performed energy calculations
based on a standard Heisenberg model to determine the
�Jab ,Jab� ,JNN ,Jc� phase diagram of the classical ground state
of CuCrO2 and to investigate the influence of Jab� /Jab, JNN,
and Jc on the incommensurate deviation away from the clas-
sical 120° structure. We show that the INS data can be pa-
rametrized by a spin-wave model taking into account an
easy-plane anisotropy term, a unique in-plane antiferromag-
netic exchange coupling Jab, and a weak next-nearest-
neighbor coupling JNN, which is evidenced for the first time
in this compound.

II. EXPERIMENTAL METHODS

A single crystal of CuCrO2 �70 mg� was grown by the flux
technique, following Ref. 16. A polycrystalline sample �5 g�
was also prepared according to Ref. 8. Inelastic neutron-
scattering experiments were performed on the thermal �2T�
and cold �4F2� neutron triple-axis spectrometers at Labora-
toire Léon Brillouin �LLB�-Orphée �Saclay, France�. Be-
cause of the challengingly small volume of the sample, fo-
cusing monochromators and analyzers were used to optimize
the intensity, as well as standard kf values �kf =2.662 or
1.550 Å−1� depending on the desired resolution. Higher or-
der contaminations were removed with pyrolytic graphite or
nitrogen-cooled Be filter placed in the scattered beam. The
sample was mounted on an aluminum holder and aligned in
the �HHL� scattering plane.

III. RESULTS

Based on a simple analysis of the magnetic structure, the
properties of CuCrO2 should be reasonably well described by
the following spin Hamiltonian:

H = �
i,j

in

plane

JijSiSj + Jc �
i,j

inter

plane

SiSj , �1�

where Jij are the planar exchange couplings between spins
located at sites i and j on a triangular plane and correspond
to nearest- �Jab� and next-nearest- �JNN� neighbor interac-
tions within this triangular plane. Jc denotes the coupling
between nearest neighbors in adjacent layers. Aiming at a
more physical understanding of this model, we have calcu-
lated the classical energy to generate a magnetic phase dia-
gram as a function of these different parameters �Fig. 2�. To
this end, the ENERMAG program17 was used, exploring, for
each point in the J space, the energy minimum, using the
generalization of the Villain-Yoshimori theorem developed
by Lyons and Kaplan18 and Freiser.19 In these calculations,
we assume that the spins order with a propagation vector of
the form k= �q q 0�, as experimentally observed �this is ac-
tually confirmed to be the most stable spin configuration in a
large range of JNN and Jc, according to classical energy cal-
culations searching for k within the �a ,b� plane�. Figure 2�a�
shows that in the isotropic case �Jab� /Jab=1�, if Jc=0, the
propagation vector is k= � 1

3
1
3 0�, which corresponds to the

classical 120° commensurate structure. If Jc�0, an incom-
mensurate structure with q close to 1

3 is the most stable,20

except in the case of a strong antiferromagnetic JNN coupling
�JNN /Jab�0.1�, which stabilizes a collinear phase with k
= � 1

2
1
2 0�. In the anisotropic case �illustrated in Fig. 2�b� for

Jab� /Jab=1.1–note that this value was chosen arbitrarily

FIG. 2. �Color online� Magnetic phase diagrams in the �Jc ,JNN� plane of a triangular lattice with strong in-plane antiferromagnetic
couplings Jab and Jab� , calculated for �a� Jab� /Jab=1 and �b� Jab� /Jab=1.1 �see Fig. 1 for the definition of Jab, Jab� , Jc, and JNN�. q describes the
value of the propagation vector k= �q q 0�. Stars refer to the coupling values determined in the case of the nonmodulated �empty symbol�
and modulated �filled symbol� helicoidal magnetic structures.
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high10 to emphasize the effect of Jab� /Jab on the phase dia-
gram�, the phase diagram is shifted toward larger antiferro-
magnetic Jc and an incommensurate structure with q� 1

3 is
accordingly stabilized even if Jc=0. The stability range of
the collinear phase is also pushed toward higher JNN when
Jab� /Jab�1.

To get more insight into this problem, we have also cal-
culated analytically the classical energy for the same k
= �q q 0� propagation vector. The different contributions as-
sociated with subsequent neighbors are listed hereafter

Eab = S�Jab� cos 4�q + 2Jab cos 2�q� ,

ENN = JNNS�1 + 2 cos 6�q� ,

Ec = JcS�1 + 2 cos 2�q� . �2�

Minimizing the classical energy E=Eab+ENN+Ec with re-
spect to q leads to the following relation between q��0.5�
and JNN, Jab, Jab� , and Jc:

Jc

Jab
=

JNN

Jab
�3 – 12 cos2 2�q� − �1 + 2

Jab�

Jab
cos 2�q� . �3�

Equation �3� is illustrated in Fig. 2 for q=0.329 and
Jab� /Jab=1 and 1.1. Note that if Jc is considered negligible,
we find the well-known result21

cos 2�q = −
Jab

2Jab�
, �4�

which leads to the commensurate value q= 1
3 �120° magnetic

structure� in the isotropic case Jab� /Jab=1.
The INS measurements carried out on the powder sample

give an overview of the excitation spectrum and of its tem-
perature evolution. Figure 3 shows the neutron intensity as a
function of energy and momentum transfer at 5 and 40 K. It
reveals below TN a magnetic excitation spectrum located be-
tween 1 and 9 meV, characterized by a broad maximum at

�5 meV. Because of the experimental resolution �1 meV�,
we cannot assert the existence of a spin gap at the Q position
of the magnetic Bragg peak �q q 0�. The above features can
be simply explained by the existence of a planar anisotropy
term in the spin Hamiltonian: with this additional term, a
global rotation of the spins in the easy-plane still does not
cost any energy, by contrast to an out-of-plane rotation,
which will cost some anisotropy energy. The spin-dynamics
spectrum will have accordingly one branch having zero en-
ergy at the magnetic Bragg point �the Goldstone mode of the
structure�, together with other branches exhibiting a gap rep-
resentative of the easy-plane anisotropy energy. In the pow-
der average spectrum, this leads to significant scattering
down to zero energy, as well as to a maximum at the energy
of the gap. At T=40 K, well above TN, the spectral weight
shifts to lower energies, and significant magnetic scattering
is still measured, reminiscent of short-range magnetic fluc-
tuations.

To go further in the analysis, we carried out triple-axis
experiments on a single crystal of CuCrO2, in the energy
range previously determined E�9 meV. We mapped out the
magnetic excitations propagating within the hexagonal plane,
along the �H H 0� direction, at 10 K �Fig. 4� for kf =1.550
and 1.97 Å−1 �because of the small volume of sample avail-
able, a larger kf was employed to increase the intensity to the
detriment of the instrumental resolution�. The spectrum �Fig.
4�a�� can be described as follows: a main branch stems from
the magnetic Bragg point �q q 0� with q�0.33. This branch
does not show any clear energy gap within instrumental res-
olution, as is also seen on energy scans along � 1

3
1
3 0� �not

shown�. However, a linear fit to the dispersion shows that if
there is a gap it is actually smaller than 0.6 meV �Figs. 4�a�
and 4�b��. This branch describes an arch whose maximum
reaches about 8 meV at the zone boundary � 1

2
1
2 0� �upper

red dotted line in Fig. 4�c��. The second observable feature is
weaker and is only clearly detected at high momentum, close
to the zone boundary � 1

2
1
2 0� �Fig. 4�c��. It appears around 4

FIG. 3. �Color online� Inelastic neutron-scattering powder spectra recorded at 5 and 40 K �kf =2.662 Å−1�. On the 5 K spectrum is also
shown the corresponding neutron elastic scattering data �from Ref. 8�.
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meV and is relatively flat compared to the previous excita-
tion, but can be clearly identified on the energy scan taken at
constant Q= �0.425 0.425 0� �arrow in Fig. 4�d��. A third
feature around the zone center � 1

3
1
3 0� �shown by an arrow

in Fig. 4�c�� is reminiscent of the 4 meV gap already evi-
denced on the powder average dispersion.

To model the spin dynamics, spin-wave calculations were
performed using the SPINWAVE software developed at LLB.
Based on the Holstein-Primakov approximation, the code di-
agonalizes any spin Hamiltonian based on Eq. �5�, which is
derived from Eq. �1�

H = Jab �
i,j

in

plane

SiSj + JNN �
i,j

in

plane

SiSj + Jc �
k,l

inter

plane

SkSl

+ Dn=�x,y,z��
i

�Sin�2. �5�

It takes into account �isotropic or anisotropic� exchange cou-

plings acting between neighboring spins, as well as single-
ion anisotropy terms modeled by Dn=�x,y,z��i�Sin�2. By defi-
nition, if D is positive, the term corresponds to an easy-plane
anisotropy and n �with coordinates �x ,y ,z�� denotes the vec-
tor perpendicular to this plane. If D is negative, it accounts
then for an easy-axis anisotropy with n being in this case the
easy-axis direction. Once the spin-wave energies are known,
spin-correlations functions are calculated to obtain the dy-
namical structure factor observed by inelastic neutron-
scattering experiments. Interactions are limited to next-
nearest neighbor. As the incommensurate deviation from q
= 1

3 is small, the calculations were made with a simplified
perfect 120° spin pattern in a commensurate and perfectly
triangular �Jab� /Jab=1� magnetic cell �3a ,3a ,c� containing
27 magnetic atoms; the �110� easy-plane, and relative spin
orientations were determined according to Ref. 8 �Fig. 1�c��.
Two models were actually considered for the helicoidal mag-
netic structure: the first one considers that the spin-rotation
envelope is circular, that is, the spin value S=1.5 is not
modulated from one Cr site to the other. The second one

FIG. 4. �Color online� Inelastic neutron-scattering spectra at 10 K along �H H 0� �kf =1.550 Å−1�. �a� Spin-wave dispersion �intensity
contour�. Red lines are a fit to the dispersion. �b� Representative spin-wave excitation scans at constant energy transfer �E=0.9, 2.5, and 5.6
meV�. Data are shifted for clarity. �c� Spin-wave dispersion �intensity contour� �kf =1.970 Å−1�. �d� Constant wave-vector scans along �0.425
0.425 0� �dashed line on �c�� with kf =1.970 Å−1 at 10 K. Arrows underline features described in the text.
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takes into account the elliptic spin modulation described in
Ref. 8, in which the spin amplitude depends on its orienta-
tion with respect to the c axis, within the easy-plane.

Figures 5 and 6 illustrate the dynamical structure factors
calculated for the nonmodulated and modulated helicoidal
models, respectively, as a function of the wave vector
�H H 0� and of the energy transfer E. In the case of the
nonmodulated model, two main modes are observed, denoted
��� and ��� in Fig. 5. On the experimental data, the � mode
shows a 4 meV gap and flattens out quite quickly close to the
zone boundary � 1

2
1
2 0�: to describe it correctly, it is neces-

sary to add in the modeling a small next-nearest-neighbor
coupling JNN, as can be seen by comparing the dispersions
calculated without �Fig. 5�a�� and with antiferromagnetic
next-nearest-neighbor coupling �JNN=0.25 meV� �Fig. 5�b��.
As is illustrated in Figs. 5�c� and 5�d�, the experimental data
is accordingly best reproduced with Jab=2.30 meV, JNN
=0.25 meV, and D�110�=0.40 meV. The influence of inter-
layer coupling Jc could not be evidenced in the modeling and
all the calculations were performed with Jc=0.

In the second model, which corresponds to a modulated
helicoidal structure, the elliptical modulation of the spin-
rotation envelope was reproduced using a spin moment S
=1.4, spin parallel to �0 0 1�, and two S=1.1, spin oriented at
120° and 240° with respect to �0 0 1� within the �110� plane,
Fig. 1�c�. This significantly affects the spin-wave dispersion:
in addition to the ��m� and ��m� modes, another branch
��m�, stemming from the magnetic Bragg point, is clearly
observed �Fig. 6�a��. In this case as well, it is necessary to
add in the modeling a small next-nearest-neighbor coupling
JNN, to account for the softening of �m close to the zone
boundary � 1

2
1
2 0� �Fig. 6�b��. The experimental data is here

best reproduced with Jab=2.30 meV, JNN=0.12 meV, and
D�110�=0.40 meV, and keeping Jc=0 �Figs. 6�c� and 6�d��. It
is worth mentioning here that the zone-center energy of �
and �m modes is approximately given by 3S	�DJab�: the
anisotropy term D�110� is thus extracted directly from the data
and nearly identical for both models. As such, it can be con-
sidered, along with Jab, as a fairly “robust” parameter in the
modeling.

FIG. 5. �Color online� Calculated dynamical structure factor of CuCrO2, plotted versus wave vector �H H 0� and energy transfer E,
using Heisenberg Hamiltonian �5� in the case of the nonmodulated helicoidal model �a� without JNN and �b� with an additional JNN coupling
term �see text�. The different spin-wave modes are outlined in white. ��c� and �d�� Superimposition of the calculated model �dark gray lines�
on the experimental inelastic scattering data map at 10 K recorded at kf =1.550 and 1.970 Å−1, respectively.
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Scattering profiles along the �H H L� directions are illus-
trated in Fig. 7�a�, which shows data taken at fixed energy
E=2.5 meV, as a function of H, for a number of L values.
We observe that the peak positions are only weakly L depen-
dent, demonstrating that the coupling Jc between the planes
is extremely weak. This result is fully consistent with the
observation of very broad magnetic Bragg peaks at 1.5 K,8

which was interpreted as short-range ��200 Å� magnetic
correlations along c, resulting from a weak interplane cou-
pling. Examples of the profiles calculated for different values
of Jc are illustrated in Fig. 7�b�. It is not possible to deter-
mine the sign of Jc or estimate its value within the accuracy
of the results, however, we nevertheless can approximate the
bandwidth of the dispersion along the c direction in the range
�−0.2,0.2� meV, which corresponds to −0.1�Jc /Jab�0.1
in the phase diagram of Fig. 2.

With the available experimental data, it is actually quite
difficult to decide which model describes CuCrO2 best. The
modulated helicoid should provide in theory the closest de-
scription, but it does not reproduce exactly the softening of

the spin-wave mode around � 1
2

1
2 0�, and probably leads to

an underestimation of JNN in the calculation. Both models
still remain fairly simple, as they do not take into account the
magnetic incommensurability, but both also give consistent
values of the magnetic couplings. Even though we are unable
to determine the nature or strength of the interplane coupling
Jc from the experimental dispersion along c, inelastic scat-
tering data in the ab plane clearly indicate that next-nearest-
neighbor coupling JNN is not negligible in CuCrO2: it is an-
tiferromagnetic, and can be estimated to range between 0.1–
0.25 meV depending on the chosen model. This is quite an
unforeseeable result, which only inelastic scattering could
evidence.

The modeling parameters obtained from the inelastic scat-
tering study can now be compared with the theoretical cal-
culations summarized in Fig. 2. Using Jab=2.30 meV from
the INS modeling of the magnetic structure, this leads, for
the nonmodulated �modulated� models to JNN /Jab�0.108
�0.052�. It is rather straightforward to see, according to the
classical energy calculations, that, if Jab� /Jab=1, a weak fer-

FIG. 6. �Color online� Calculated dynamical structure factor of CuCrO2, plotted versus wave vector �H H 0� and energy transfer E,
using Heisenberg Hamiltonian �5� in the case of the modulated helicoidal magnetic structure model �a� without JNN and �b� with an additional
JNN coupling term �see text�. The different spin-wave modes are outlined in white. ��c� and �d�� Superimposition of the calculated model
�dark gray lines� on the experimental inelastic scattering data map at 10 K recorded at kf =1.550 and 1.970 Å−1, respectively.

POIENAR et al. PHYSICAL REVIEW B 81, 104411 �2010�

104411-6



romagnetic coupling is needed to stabilize a structure with
q=0.329 �Fig. 2�a��. In that case Jc can be estimated using
Eq. �3� to be �−0.04 �−0.08� meV �illustrated as an empty
�filled� star in the phase diagram of Fig. 2�a��. As an ex-
ample, the dispersion calculated in the case of the modulated
helicoid model for Jab=Jab� =2.30 meV, Jc=−0.08 meV, and
D�110�=0.40 meV, is illustrated in Fig. 7�c� and is in good
agreement with the data. However, with the JNN value de-
duced from INS measurements, it also follows that, as soon
as Jab� /Jab�1.02, the q=0.329 structure of CuCrO2 can be
stabilized for a tenuous antiferromagnetic Jc. As a result, not
knowing the exact value of Jab� /Jab in CuCrO2 prevents any
actual insight on the sign of the interplane coupling Jc: what-
ever the chosen model, the helicoidal magnetic structure of
CuCrO2 is stabilized by a weak antiferromagnetic next-
nearest-neighbor coupling �JNN=0.25 �0.12� meV�, in addi-
tion to a weak interplane coupling −0.2�Jc�0.2 meV,
whose value will depend on Jab� /Jab. Because of this signifi-
cant value of JNN, the helicoidal structure of CuCrO2 actually
lies very close to the limit of stability of the collinear mag-
netic phase.

IV. DISCUSSION

In CuCrO2, calculations and experimental observations
have thus highlighted the delicate balance between Jab� /Jab,
JNN, and Jc to stabilize the incommensurate helicoidal mag-
netic order. An improved model is, however, required to fur-
ther understand some of the more subtle features of the in-
elastic scattering data. Very few studies of the spin dynamics
in other transition metal �TM� delafossite compounds are
actually available in the literature and they mainly concern

undoped and Al-doped CuFeO2. Ye et al., in Ref. 13, de-
scribed the spin dynamics in the collinear four-sublattice
structure of CuFeO2 using a Jab�1.14 meV, a strong JNN

�0.50 meV, and an additional next-next-nearest-neighbor
coupling JNNN�0.65 meV, though the authors themselves
acknowledge that there are no really clear physical grounds
to it. In CuFeO2, the excitation along c is also clearly disper-
sive, and the interplane coupling is accordingly strongly an-
tiferromagnetic �Jc�0.33 meV�. A quantitative analysis of
the magnetic couplings in CuFeO2 is beyond the scope of
this paper, but we note that, in a fairly broad interpretation of
our ENERMAG calculations, larger coupling values will lead
to a larger deviation from commensurability, and for a strong
JNN coupling, to a collinear phase, in agreement with what is
observed for CuFeO2. A more detailed INS investigation of
other TM delafossites is required at this point to draw a
general picture, but the relative strengths of the magnetic
paths Jab, JNN, and Jc dictated by the structural topology are
certainly strongly dependent on the TM element. The
strength of the interplane coupling Jc, intermediated by the
linear copper bonding, seems, in particular, to depend highly
on the nature of the TM cation.

Ye et al. also point out that, even if the collinear structure
of CuFeO2 shows magnetic Bragg reflections at � 1

4
1
4

3
2 �, the

dispersion exhibits two minima at the Q positions corre-
sponding to the two incommensurate magnetic Bragg peaks
positions. Indeed, the main difference between the spin dy-
namics in the collinear phase of CuFeO2 and the incommen-
surate phase of CuFe1−xAlxO2 �x=0.0155� lies in the low-
energy part of the spectrum, where it can be seen that the
energy of the spin-wave modes at these particular Q vectors
softens down to zero.22 The spin dynamics in both structures
is thus very similar, and it is plausible that the spin Hamil-
tonian remains basically identical. Based on these consider-
ations, it seems that the transition toward the collinear four-
sublattice magnetic phase in CuFeO2 is not purely an effect
of magnetic coupling, but is rather related to an additional
interaction, likely to be a strong coupling to the lattice in this
case. In this sense, the substantial JNN value, coupled to a
significant spin-lattice effect, could be understood as the
driving force triggering the symmetry lowering transition in
CuFeO2. In CuCrO2, although a JNN coupling has been evi-
denced, it has a smaller amplitude than in CuFeO2. Accord-
ingly, hints to a possible magnetoelastic coupling can be seen
in the subtle relaxation of the compression along c of the
CrO6 octahedron8 and the contraction of the crystallographic
axis normal to the helicoid plane9 at the onset of spin order-
ing.

Interestingly, the stabilization of the four-sublattice collin-
ear magnetic structure to the detriment of the incommensu-
rate one in CuFeO2 coincides with the disappearance of the
multiferroic behavior. In contrast, CuCrO2, with weak JNN
and Jc, is multiferroic below TN and remains down to the
lowest temperatures a good example of an almost perfect 2D
Heisenberg system on a triangular lattice. The transition at
finite temperature toward a 3D magnetically ordered state,
concomitantly with a ferroelectric phase, is only ensured by
the small perturbations Jab� /Jab, JNN, and Jc.

FIG. 7. �Color online� Inelastic neutron-scattering study along
�H H L� �kf =1.550 Å−1�. �a� Spin-wave excitation scans at con-
stant energy transfer �E=2.5 meV� along the �H H L� directions
�L=0,0.35,0.5,0.7,1�. Data are shifted for clarity. �b� Comparison
between experimental and modeled dispersion profiles along
�H H 0� calculated for different values of interplanar coupling Jc

=0, 0.2, and −0.2 meV in the modulated helicoid case. �c� Intensity
contour of the calculated dispersion in the �H H L� plane �E
=2.5 meV�, for a ferromagnetic interplanar coupling Jc=
−0.08 meV in the modulated helicoidal structure case.
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V. CONCLUSION

In summary, the spin dynamics of the geometrically frus-
trated triangular antiferromagnet multiferroic CuCrO2 has
been mapped out using inelastic neutron scattering. We have
determined the relevant spin Hamiltonian parameters, show-
ing that the helicoidal model with a strong planar anisotropy
correctly describes the spin dynamics. The weakly dispersive
excitation along c reflects the 2D character of the magnetic

interactions, but the spin dynamics in CuCrO2 clearly point
out the relevance of the next-nearest-neighbor interaction to
stabilize the magnetic order.

ACKNOWLEDGMENT

Financial support for this work was partially provided by
the French Agence Nationale de la Recherche, Grant No.
ANR-08-BLAN-0005-01.

*Corresponding author; sylvain.petit@cea.fr
1 T. Kimura, J. C. Lashley, and A. P. Ramirez, Phys. Rev. B 73,

220401 �2006�.
2 S. Seki, Y. Onose, and Y. Tokura, Phys. Rev. Lett. 101, 067204

�2008�.
3 N. Terada, S. Mitsuda, H. Ohsumi, and K. Tajima, J. Phys. Soc.

Jpn. 75, 023602 �2006�.
4 S. Mitsuda, N. Kasahara, T. Uno, and M. Mase, J. Phys. Soc.

Jpn. 67, 4026 �1998�.
5 F. Ye, Y. Ren, Q. Huang, J. A. Fernandez-Baca, P. C. Dai, J. W.

Lynn, and T. Kimura, Phys. Rev. B 73, 220404 �2006�.
6 M. F. Collins and O. A. Petrenko, Can. J. Phys. 75, 605 �1997�.
7 H. Kadowaki, H. Kikuchi, and Y. Ajiro, J. Phys.: Condens. Mat-

ter 2, 4485 �1990�.
8 M. Poienar, F. Damay, C. Martin, V. Hardy, A. Maignan, and G.

André, Phys. Rev. B 79, 014412 �2009�.
9 K. Kimura, T. Otani, H. Nakamura, Y. Wakabayashi, and T.

Kimura, J. Phys. Soc. Jpn. 78, 113710 �2009�.
10 H. Yamaguchi, S. Ohtomo, S. Kimura, M. Hagiwara, K. Kimura,

T. Kimura, T. Okuda, and K. Kindo, Phys. Rev. B 81, 033104
�2010�.

11 K. Kimura, H. Nakamura, S. Kimura, M. Hagiwara, and T.
Kimura, Phys. Rev. Lett. 103, 107201 �2009�.

12 T. H. Arima, J. Phys. Soc. Jpn. 76, 073702 �2007�.
13 F. Ye, J. A. Fernandez-Baca, R. S. Fishman, Y. Ren, H. J. Kang,

Y. Qiu, and T. Kimura, Phys. Rev. Lett. 99, 157201 �2007�.
14 M. Soda, K. Kimura, T. Kimura, M. Matsuura, and K. Hirota, J.

Phys. Soc. Jpn. 78, 124703 �2009�.
15 K. Kimura, H. Nakamura, K. Ohgushi, and T. Kimura, Phys.

Rev. B 78, 140401 �2008�.
16 M. Poienar, C. Martin, A. Maignan, and V. Hardy �unpublished�.
17 N. El Khayati, R. C. El Moursli, J. Rodriguez-Carvajal, G. An-

dre, N. Blanchard, F. Bouree, G. Collin, and T. Roisnel, Eur.
Phys. J. B 22, 429 �2001�.

18 D. H. Lyons and T. A. Kaplan, Phys. Rev. 120, 1580 �1960�.
19 M. J. Freiser, Phys. Rev. 123, 2003 �1961�.
20 H. Kadowaki, H. Takei, and K. Motoya, J. Phys.: Condens. Mat-

ter 7, 6869 �1995�.
21 H. Kawamura, Prog. Theor. Phys. 101, 545 �1990�.
22 N. Terada, S. Mitsuda, T. Fujii, and D. Petitgrand, J. Phys.: Con-

dens. Matter 19, 145241 �2007�.

POIENAR et al. PHYSICAL REVIEW B 81, 104411 �2010�

104411-8


